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Abstract

Aim—To recognise automatically the
main components of the fundus on digital
colour images.

Methods—The main features of a fundus
retinal image were defined as the optic
disc, fovea, and blood vessels. Methods are
described for their automatic recognition
and location. 112 retinal images were pre-
processed via adaptive, local, contrast
enhancement. The optic discs were lo-
cated by identifying the area with the
highest variation in intensity of adjacent
pixels. Blood vessels were identified by
means of a multilayer perceptron neural
net, for which the inputs were derived
from a principal component analysis
(PCA) of the image and edge detection of
the first component of PCA. The foveas
were identified using matching correla-
tion together with characteristics typical
of a fovea—for example, darkest area in
the neighbourhood of the optic disc. The
main components of the image were iden-
tified by an experienced ophthalmologist
for comparison with computerised meth-
ods.

Results—The sensitivity and specificity of
the recognition of each retinal main com-
ponent was as follows: 99.1% and 99.1% for
the optic disc; 83.3% and 91.0% for blood
vessels; 80.4% and 99.1% for the fovea.
Conclusions—In this study the optic disc,
blood vessels, and fovea were accurately
detected. The identification of the normal
components of the retinal image will aid
the future detection of diseases in these
regions. In diabetic retinopathy, for exam-
ple, an image could be analysed for retino-
pathy with reference to sight threatening
complications such as disc neovasculari-
sation, vascular changes, or foveal exuda-
tion.

(Br ¥ Ophthalmol 1999;83:902-910)

The patterns of disease that affect the fundus
of the eye are varied and usually require identi-
fication by a trained human observer such as a
clinical ophthalmologist. The employment of
digital fundus imaging in ophthalmology pro-
vides us with digitised data that could be
exploited for computerised detection of dis-
ease. Indeed, many investigators use computer-
ised image analysis of the eye, under the direc-
tion of a human observer."* The management
of certain diseases would be greatly facilitated
if a fully automated method was employed.” An

obvious example is the care of diabetic
retinopathy, which requires the screening of
large numbers of patients (approximately
30 000 individuals per million total
population®”). Screening of diabetic retino-
pathy may reduce blindness in these patients
by 50% and can provide considerable cost sav-
ings to public health systems.® ° Most methods,
however, require identification of retinopathy
by expensive, specifically trained personnel.'* "
A wholly automated approach involving fun-
dus image analysis by computer could provide
an immediate classification of retinopathy
without the need for specialist opinions.

Manual semiquantitative methods of image
processing have been employed to provide
faster and more accurate observation of the
degree of macula oedema in fluorescein
images."* Progress has been made towards the
development of a fully automated system to
detect microaneurysms in digitised fluorescein
angiograms.” '° Fluorescein angiogram images
are good for observing some pathologies such
as microaneurysms which are indicators of dia-
betic retinopathy. It is not an ideal method for
an automatic screening system since it requires
an injection of fluorescein into the body. This
disadvantage makes the use of colour fundus
images, which do not require an injection of
fluorescein, more suitable for automatic
screening.

The detection of blood vessels using a
method called 2D matched filters has been
proposed.'” This method requires the convolu-
tion of each image with a filter of size 15 x 15
for at least 12 different kernels in order to
search for directional components along dis-
tinct orientations. The large size of the convo-
lution kernel entails heavy computational cost.
An alternative method to recognise blood ves-
sels was developed by Akita and Kuga."® This
work does not include automatic diagnosis of
diseases, because it was performed from the
viewpoint of digital image processing and arti-
ficial intelligence.

None of the techniques quoted above has
been tested on large volumes of retinal images.
They were found to fail for large numbers of
retinal images, in contrast with the successful
performance of a neural network.

Artificial neural networks (NNs) have been
employed previously to examine scanned
digital images of colour fundus slides.” Using
NNs, features of retinopathy such as haemor-
rhages and exudates were detected. These were
used to identify whether retinopathy was
present or absent in a screened population but
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Figure 1  Digital colour retinal image.

allowed no provision for grading of retin-
opathy. The images with retinopathy still
require a grading by a trained observer. Grad-
ing greatly improves the efficiency of the
screening service, because only those patients
with sight threatening complications are identi-
fied for ophthalmological management. This
task is more complex than identifying the pres-
ence of retinopathy because the computer pro-
gramme must be able to detect changes such as
neovascularisation, cotton wool spots, vascular
changes, and perifoveal exudation.”® The first
step for achieving this aim is to be able to locate
automatically the main regions of the fundus—
that is, the optic disc, fovea, and blood vessels.
The data from these regions can then be
analysed for features of sight threatening
disease. Identification of the regions of the fun-
dus may also aid analysis of images for other
diseases that affect these areas preferentially—
for example, glaucoma and senile macular
degeneration.

In this study, a variety of computer image
analysis methods, including NNs, were used to
analyse images to detect the main regions of
the fundus.

Methods

In all, 112 TIF (tagged image format) images
of the fundi of patients attending a diabetic
screening service were obtained using a Top-
con TRC-NW5S non-mydriatic retinal cam-
era. Forty degree images were used.

PREPROCESSING OF COLOUR RETINAL IMAGES

The captured fundus images were of dimen-
sions 570 X 550 pixels. Each pixel contained
three values, red, green, and blue, each value
being quantised to 256 grey levels. An example
can be seen in Figure 1. The contrast of the
fundus images tended to diminish as the
distance of a pixel from the centre of the image
increased. The objective of preprocessing was
to reduce this effect and to normalise the mean
intensity. The intensities of the three colour
bands were transformed to an intensity-hue-
saturation representation.”’ This allowed the
intensity to be processed without affecting the
perceived relative colour values of the pixels.
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Figure 2 Retinal image after preprocessing by local colour
contrast enhancement.

The contrast of the intensity was enhanced by
a locally adaptive transformation. Consider a
subimage, W(, j), of size MxM pixels centred
on a pixel located at (7,7). Denote the mean and
standard deviation of the intensity within
W@, j) by <f>, and o, respectively. Suppose
that f,, and f, were the maximum and
minimum intensities of the whole image.

The adaptive local contrast enhancement
transformation was defined by equations (Al)
and (A2) of appendix A.

Figure 2 shows the effect of preprocessing on
a fundus image, Figure 1.

RECOGNITION OF THE OPTIC DISC

The optic disc appeared in the fundus image as
a yellowish region. It typically occupied ap-
proximately one seventh of the entire image, 80
x 80 pixels. The appearance was characterised
by a relatively rapid variation in intensity
because the “dark” blood vessels were beside
the “bright” nerve fibres. The variance of
intensity of adjacent pixels was used for recog-
nition of the optic disc.

Consider a subimage W(7, j) of dimensions
MxM centred on pixel (3, 7). Let <f> w(iy) as
defined by equation (A3) be the mean intensity
within W(, 7). (If W(3, ;) extended beyond the
image, then undefined intensities were set to
zero and the normalisation factor was corre-
spondingly reduced.)

A variance image was
transformation

&) - p()) = <f*>, = (<f>)° 9]

where the subimage was 80%x80 pixels. An
image of the average variance within subimages
was then obtained as

p(i:]) - Q(iJ]) = <P>W(i, » (2)

The location of the maximum of this image
was taken as the centre of the optic disc, (7, 7,),

formed by the

(ip jo) = arg max <p>,.. (€))
W)

The variance image of Figure 2 is shown in
Figure 3 and the location of the optic disc in
Figure 7.
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Figure 3 The variance image of Figure 2.

RECOGNITION OF BLOOD VESSELS
Blood vessels appeared as networks of either
deep red or orange-red filaments that origi-
nated within the optic disc and were of
progressively diminishing width. A multilayer
perceptron NN was used to classify each pixel
of the image.””* Preprocessing of the image
was necessary before presentation to the input
layer of the NN. Pattern classifiers are most
effective when acting on linearly separable data
in a small number of dimensions. More details
are described in appendix B.

The values of the three spectral bands of a
pixel were strongly correlated. The principal
component transformation® was used to rotate
the axes from red-green-blue to three orthogo-
nal axes along the three principal axes of corre-
lation, thus diagonalising the correlation coef-
ficient matrix. The values along the first axis
exhibited the maximum correlated variation of
the data, containing the main structural
features. Uncorrelated noise was concentrated
mainly along the third axis while, in general,
texture tended to be along the second. The
original data were reduced in dimensionality
by two thirds by the principal component
transformation.

A measure of edge strength was obtained for
each pixel by processing the image from the
first principal component using a Canny edge
operator.”** This was used to enhance vessel/
non-vessel separability.

Figure 4 An example of the data input to the net, of size 2 X 10 x 10 pixels. In this
example, the pattern was classified as vessel.
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Figure 5 Classification of the image Figure 2 into
vessels/non-vessels.

Figure 6 The classified image after post-processing to
remove small regions.

NEURAL NETWORK ALGORITHM

Each pixel of a fundus image was classified as
vessel or non-vessel. The data input to the NN
were the first principal component® and edge
strength values from a subimage of 10 x 10
pixels localised on the pixel being classified, as
shown in Figure 4. The net was a three layer
perceptron having 200 input nodes, 20 hidden
nodes, and two output nodes.

A training/validation data set of 25 094
examples, comprising 8718 vessel and 16 376
non-vessel, was formed by hand and checked
by a clinician. The back propagation algorithm
with early stopping was applied,” *' using 56 of
the data for training and Vs for validation.
POST-PROCESSING” *

Figure 5 shows the classification of the entire
image into vessel and non-vessel, denoted as
black and white respectively.

The performance of the classifier was
enhanced by the inclusion of contextual
(semantic) conditions. Small isolated regions
of pixels that were misclassified as blood vessels
were reclassified using the properties that
vessels occur within filaments, which form net-
works. Three criteria were applied—size, com-
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Figure 7 The results of automatic recognition of the main
components of the fundus from a digital fundus colour
image.

pactness, and shape. Regions smaller than 30
pixels were reclassified as non-vessels. The
compactness of a region may be expressed
using the ratio of the square of the perimeter to
the area®—for example, circular discs have a
ratio of 4m. Regions whose ratios were less than
40 were reclassified as non-vessels. Approxi-
mating a region by an elliptical disc yields a
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measure of shape in terms of the ratio of the
major and minor axes.” Regions smaller than
100 pixels with a ratio smaller than 0.95 were
reclassified as non-vessels as can be seen in
appendix C. Figure 6 shows the effect of such
post-processing on an image.

RECOGNITION OF THE FOVEA

The centre of the fovea was usually located at a
distance of approximately 2.5 times the diam-
eter of the optic disc, from the centre of the
optic disc. It was the darkest area of the fundus
image, with approximately the same intensity
as the blood vessels. The fovea was first corre-
lated to a template of intensities. The template
was chosen to approximate a typical fovea and
was defined by

2672

(52 2
¢(i,j) =128 1—;exp<(’+f)> W

where (3,7) are relative to the centre of the tem-
plate. A template of size 40 X 40 pixels was
employed, the standard deviation of the Gaus-
sian distribution being ¢ = 22. Given a subim-
age W(i,j) centred on pixel (7,7) of dimensions
MxM with intensities g(k, D, (k,) € W(i, ), the

Figure 8 A sample of images showing the results of the recognition of the main components from digital fundus colour

images.
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correlation coefficient of W at (7, j) with an
image having intensities f(3, 7) is*

S D-<fo N g G—koj—D)-<g)
VG )=—2 ®

1
{;(f<k,z>—<f>W)zg(g(i—k)j—l)—<g>W)2}/2

The correlation coefficient y(7, j) is scaled to
the range [—-1 < y < 1], and is independent of
mean or contrast changes in f(3, j) and g(, j).
The range of values runs from anti-correlation,
—1, through no correlation, 0, to perfect corre-
lation +1.

The location of maximum correlation be-
tween the template and the intensity image,
obtained from the intensity-hue-saturation
transformation, was chosen as the location of
the fovea, subject to the condition that it be an
acceptable distance from the optic disc and in a
region of darkest intensity.

The criteria deciding the existence of the
fovea were a correlation coefficient more than
0.5 and a location at the darkest area in the
allowed neighbourhood of the optic disc.

Figures 7 and 8 give examples of foveal loca-
tion, the cross indicates the located position in
each example.

Exnrmgile of 200020 sampling paich mmape.
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VALIDATION OF THE ACCURACY OF DETECTION OF
REGIONS

An experienced ophthalmologist observed the
localisation of the optic disc and fovea by the
algorithms. In order to provide independent
test data for the blood vessels, the same
ophthalmologist manually traced the vessels of
73 randomly selected patches of 20 % 20 pixels
taken from the images. The traced vessels were
then compared with the positions of the vessels
identified by the neural network. An example
of a random patch is shown in Figure 9.

Results

The recognition rates for optic disc, blood ves-

sels and fovea were as follows:

(1) The optic disc was identified incorrectly in
one image. The sensitivity and specificity
for optic disc recognition were 99.1% and
99.1% respectively.

(2) The recognition rate of blood vessels by
the neural network was 99.56% for train-
ing and 96.88% for validation data respec-
tively. The sensitivity and specificity of the
detection of blood vessels were calculated
for each of the 73 patches. The overall sen-
sitivity and specificity for the detection of

Expand patch imege.

(T e wilhite sqjuare bow)

Wiemels lnbeled by clinician.  Wesels labelad by Mearad Network Compareon of hbeh rom
(MM}, clmicisn and MM

Red; Vessels by clinicizn & MM,

Careeii; Vessels by clinscinn but non-vessols bne BM

Eilug: Mon-vessels by clinician but vessals by WM, Reling] backgrowad; Both matched in identify non-vossels

Figure 9 Example of patch of size 20 x 20 pixels used to measure the accuracy of vessels recognition.
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the blood vessels were 83.3% (SD 16.8%)
and 91.0% (5.2%) respectively.

To assess the accuracy of recognition of
the fovea, the images were separated into
three groups: group 1: 71 images presented
all of the fovea of within the image. In 60
the fovea was detected correctly (84.5%)
but in 11 (15.5%) the fovea was unidenti-
fied; group 2: in 29 retinal images the fovea
was at the edge of the image but more than
half was present on the image. In 18
images the correct position of the fovea
was located (62.1%). In one image the
fovea was detected inaccurately in the
nasal retina (3.4%). The fovea was not
identified in 10 images (34.5%); group 3:
12 retinal images either presented no fovea
or less than half of the foveal area was
within the image. The algorithm did not
identify a fovea in these images.

The overall sensitivity and specificity of the
detection of the fovea were 80.4% and 99.1%
respectively.

3)

Discussion

In this study computer based algorithms were
used to detect the main regions of the fundus
without any intervention from an operator.
The accuracy of the detection was high for the
optic disc, blood vessels, and the fovea
(especially when the image contained the
whole foveal area). It is hoped that the
detection of these regions will aid the examina-
tion of fundal disorders. The optic disc was
particularly reliably detected and may be
examined in the future for patterns of disease
such as glaucoma.” The fovea was missed in a
number of cases but usually when there was
poor centration of the fovea in the image. This
can be easily remedied by more careful fundus
photography. The detection of the major blood
vessels was performed using NN analysis. NNs
have been employed in the past in other areas
of medicine” and ophthalmology™ ** because
of the capability of these programs to cope with
highly variable images. Indeed, NN have
already been used before to detect features of
retinopathy but employing minimal
preprocessing.®” The preprocessing and post-
processing used in this study reduces the
reliance upon the NN and improves the
efficiency of the computer analysis. The
smaller blood vessels were more difficult to
detect. However, the method used to calculate
the accuracy of the detection of the blood ves-
sels by comparing vessels recognised by the
NN technique with the vessels traced by the
ophthalmologist may introduce some errors. It
was technically difficult for the ophthalmolo-
gist to locate subjectively the exact position of
vessels, especially at their edges. Therefore, the
accuracy of the ophthalmologists’ identifica-
tion of blood vessels may have been variable.
Other methods may need to be explored in
order to detect all of the blood vessels—for
example, active contour models
(SNAKES)," ** to avoid confusion with fea-
tures such as retinal haemorrhages. There may
be other applications for this technology—for
example, the accurate detection of the major
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blood vessels may allow the “fingerprint” of the
blood vessels to be used for identifying
individuals in a way similar to that in which iris
crypts have been utilised.*”

In this study it was possible to detect the
main regions of the fundus image. Once these
have been identified, the data from these
regions can be analysed for abnormality. Of
course some of the diseases that we would pro-
pose to study may alter the appearance of these
regions, reducing their detection. However, the
algorithms were designed to minimise this risk,
particularly for disease processes such as
diabetic retinopathy. In diabetic retinopathy
further algorithms will be required to detect
features which indicate risk to the patient’s
sight such as neovascularisation, cotton wool
spots, venous changes, and parafoveal exuda-
tion. The detection of other features of
retinopathy in diabetes (haemorrhages and
exudates), and other disorders such as senile
macular degeneration, will be facilitated by the
removal from the image data set of complex
regional features such as the blood vessels and
the optic disc. In diabetes, grading of a
patient’s retinopathy by fundus imaging and
computer analysis, at the site of acquisition of
the image, would allow an immediate opinion
for the patient on the urgency of referral for an
ophthalmological opinion.

In conclusion, computer algorithms were
able to detect regions of the fundus. These may
be exploited for the examination of patterns of
disease. This may have particular relevance to
the management of common ophthalmological
disorders such as diabetic retinopathy.

Appendix A: colour local contrast
enhancement

The RGB colours, where R, G, and B are
abbreviated from the colours Red, Green, and
Blue respectively, represent the colour model
used for computer graphics or image analysis.
Another colour model, which will be used in
this work, is the JHS model, where I, H, and S
are abbreviations for Intensity, Hue, and Satura-
tion respectively. The RGB and IHS have an
invertible relation between them.*

The importance of an RGB model is to dis-
play colour images. To present the full colour
techniques for image enhancement in some
detail, we are interested in the IHS model. The
IHS model is best suited to present full colour
techniques for image enhancement in detail. It
is important that once the IHS model is
applied to enhance an image, it must be
converted back to RGB for visual display. The
IHS model is suitable for image enhancement
because the intensity component is decoupled
from the colour information of the image.
Applying the local contrast enhancement tech-
nique to the intensity component and convert-
ing the result to RGB for display will not affect
the colour content of the image.

LOCAL CONTRAST ENHANCEMENT**

Let the intensity, f, of the picture elements
(pixels) of an N x N digital image be indexed
by (4,7) 1< 1,7 < N. Consider a subimage of size
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M x M centred on (7, j) in this paper M=49.
Denote the mean and standard deviation of the
intensity within W by <f> and o (f) respec-
tively.

The objective is to define a point transfor-
mation dependent on W such that the distribu-
tion is localised around the mean of the inten-
sity and covers the entire intensity range. The
implicit assumption is that W is large enough
to contain a statistically representative distribu-
tion of the local variation of grey levels, yet
small enough to be unaffected by the gradual
change of contrast between the centre and the
periphery of the fundus image. The adaptive
contrast enhancement transformation is de-
fined by

[Ww (f)—Pw (fumin)]

FGD= 8(h)) =225 [P (fonax) — P (fimin)] (A
where the sigmoidal function was
-1
Yy (f)=| 1+exp <<f>w_f) (A2)
Ow

while f.. and f, are the maximum and
minimum values of intensity within the whole

image with

_1 (k1) A3
i M (M%({ﬁ o

syl S D-<f>) (A4
GW(f)_MZ (k,bgl’/(i:; F o

The local contrast enhancement function
provides large contrast enhancement for an
initially small ¢ (poor contrast) and little
contrast enhancement for an initially large o
(high contrast).

As a result of local contrast enhancement,
the dark area is brighter and clearer showing
more detail. However, the technique of local
contrast enhancement not only adjusts the
contrast of the image but also increases the
noise. Hence, a 2D Gaussian smoothing filter
or median filter has been applied in order to
reduce the noise before the local contrast
enhancement process.

Appendix B: prepare data for NN

FIRST PRINCIPAL, COMPONENT"

The PCA (principal component analysis) tech-
nique is the same as the Karhunen Loeve trans-
form technique, also known as Hotelling trans-
form, which aims to form linear combinations of
the image bands in order to maximise the infor-
mation content in the highest order bands. Giv-
ing a set of K image bands, denoted by the
intensities of N” pixels £,(z) for i=1,...,N a =
1,...,K. We first form a set of zero mean images
by subtracting off the mean of each band

g, = £ — <£,6)> (B1)
where
1 &
<fii)>= 7p 2 fi D) (B2)
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To simplify the formulation, it is convenient
to write the set of K image bands g,(7) as a N° x
K matrix, where each image of the spectral
band forms a column of the matrix normally,

g (1) g ... gx()
gl('2) gz(.l) = gK§2) (B3)

(N g(N2)--- gx (N?)

G =

We define a K by K matrix C as

C=G"G, (B4)

where G" is the transpose of G. The matrix
C, can be expressed in terms of the input image
2,(2) as having elements,

=2 8080
=S UO-<[OARO-<f@>)  BS)
i=1

N? 1 N? N?
=S OO - Nz S EOS 46
i=1 i=1 i=1

This is the un-normalised correlation be-
tween the ath and the bth image bands.

Hence C is the spectral correlation matrix of
the images. We form a matrix H of uncorre-
lated images by the orthogonal K x K matrix
transform B.

H=GB (B6)
Since the columns of H are uncorrelated
H' H=A (B7)
where A is a diagonal matrix
A, 0 -0
A= 02 0 ®8)
0O 0 - 7"1<

it follows that

CB=BA (B9)

The above equation is just the familiar eigen
vector/value problem where the A, are the
eigenvalues of the matrix C and the columns of
the matrix B are the corresponding eigenvec-
tors. Since the matrix C is symmetric, ¢, = ¢,,,
the eigenvector problem involves finding the
eigenvalues and vectors of a real symmetric
matrix. Hence we can solve for the eigenvalues
and vectors by applying Jacobi transforma-
tions.* Finally, the transform of the set of K
orthogonal images /,(z), being linear combina-
tions of the normalised images g,(2), is given by

K
ha@) = b,y g, (B10)
b=1

fora=1,...,Kand k1), h,(2), ... , h,(IN) will
be the first component of the set of principal
components which will be used together with
the edge gradient as the pattern data for classi-
fication by a neural network.

EDGE GRADIENT

In this paper we applied the edge operator to
the first component of a PCA image. Canny
has defined an edge detection operator, which
is optimal for step edges corrupted by white
noise. The operator that we use in this work is
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the implementation of operator obtained by
Spacek. The reasons that we use Spacek’s solu-
tion because Canny was unable to construct a
solution of the defining conditions and so
approximated one by a difference of gaussians.
Spacek demonstrated that performance of his
solution was superior to Canny’s approxima-
tion. Since the operator satisfies the conditions
proposed by Canny we refer to it as the Canny
edge operator.

The Spacek method that we use takes the
form.*

h(x) = 16.9564 sin(x) + 13.0161 cos(x) —
18.8629 exp(x) + 4.8468 exp(—x) + 1 (B11)
h(x) has been defined in the interval (-1, 0).
Values in the range (0, 1) may be obtained from
the anti-symmetry of the edge operator. For
our application, we have modified to use the
Canny edge filter in two dimensions by
smoothing the operator in the orthogonal
direction, hence yielding two dimensional edge
kernels 4,(x,y) and A (x,y) for edge strengths in
the x, y directions respectively. Now we apply
the 2D edge filter in x and y directions. The
response of the filters to the image is given by a
2D convolution integral.

The response an image to an edge kernel is
given by a 2D discrete convolution, the edge
strength in the x direction

e.(6,3) = YYh, (&) f(x=E, y=p)dédy (B12)
with a similar equation for e(x, v). The
intensity of the edge image intensity is defined
by

e(x,0)= [(e. Go, )P +(es e, ) |2 (B13)

Appendix C: post-processing

AREA

The simplest and most natural property of a
region is its area, given by the number of pixels
of which the region is comprised. This method
was used to remove the small regions of the
output vessels/non-vessels classification from
neural net, small regions with less than 30 pix-
els were removed.

COMPACTNESS”
Compactness is a commonly used shape
descriptor independent of linear transforma-
tions given by

(region border length)?

compactness = area

(CD

The most compact region in Euclidean
space is a circle. Compactness assumes values
in the interval (1, o) in digital images if the
boundary is defined as an inner boundary. The
limit value of compactness in this work is 40,
within the region less than 100 pixels will be
determined.

ELLIPSE PARAMETER
The ellipse parameter used is the ratio between
the major and the sum of the two (major and
minor) axes of an ellipse. This parameter
describes the shape of the region and lies
between 0.5 (a circle) and 1 (a line). The
method that we used to calculate this para-
meter is the same as employed in PCA.
Considering a region, with two variables, x
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variable (positions of the region pixels in x
coordinate) and y variable (positions of the
region pixels in y coordinate). The major and
minor axes of the region can be calculated as
the eigen values of the covariance matrix:

D= <x>)? D (x;— <x>) (v — <y>)
C= (C2)
S —<x>) (3= <y>) D(y—<y>)’

where x;, y, are coordinates in the x, y directions
of the region and <x>, <y> are the average
value of the region’s x, y coordinates. From this
property, the ellipse parameter of circle, ellipse,
and line are 0.5, 0.5 < ellipse param <1, and 1
respectively. From our experiments with the
test images of variable shapes, we decided to
use an ellipse parameter of less than 0.95 the
small regions (less than 100 pixels) to classify
then as non-vessels.
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